Abstract

RA is characterized by massive proliferation of synovial tissue, accompanying infiltration of the tissue with CD4+ T lymphocytes, and a genetic linkage to the MHC antigen HLA-DR4. Since T cells are restricted by class II MHC molecules such as DR4, this suggests a direct role for these CD4+ cells in pathogenesis. To investigate T cell receptor (TCR) usage in RA, we used oligonucleotide primers specific for each of the major alpha and beta TCR subfamilies to amplify cDNA derived from whole synovium or synovial tissue T cell lines in a family-specific manner. Detection of amplified DNA was facilitated by utilizing oligonucleotide probes derived from the constant regions of the TCRs. The TCR repertoire present in the synovial T cell lines was quite heterogeneous, with an average of 15 alpha chains and 15.8 beta chains detected. When synovial tissue was analyzed, the predominant TCR subfamilies detected tended to be more restricted, with an average of 4.6 alpha chains and 8.6 beta chains detected. This compared with an average of six alpha chains and 12 beta chains in nonrheumatoid synovial samples. The average percentage of synovia positive per TCR beta family was significantly lower for RA versus non-RA specimens (46.1 vs 65.6%, P = 0.034). These findings indicate that while a polyclonal population of T cells is present in RA synovium, the predominant patterns of TCR transcript expression may be somewhat more restricted, suggesting that TCR-based therapy of RA is possible.

Authors

W V Williams, Q Fang, D Demarco, J VonFeldt, R B Zurier, D B Weiner

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement