Endotoxemia causes hypotension characterized by vasodilation and resistance to vasopressor agents. The molecular mechanisms responsible for these changes are unclear. The ATP-regulated K+ (K+ATP) channel has recently been found to be an important modulator of vascular smooth muscle tone which may transduce local metabolic changes into alterations of vascular flow. We report here that in endotoxic hypotension, the sulfonylurea glyburide, a specific inhibitor for the K+ATP channel, caused vasoconstriction and restoration of blood pressure. Glyburide also induced vasoconstriction and restoration of blood pressure in the vasodilatory hypotension caused by hypoxic lactic acidosis, while it was ineffective in the hypotension induced by sodium nitroprusside. Thus, vasodilation and hypotension in septic shock are, at least in part, due to activation of the K+ATP channel in vascular smooth muscle, and anaerobic metabolism with acidosis is a sufficient stimulus for channel activation. Because anaerobic metabolism and acidosis are common features in shock of any etiology, sulfonylureas may be effective therapeutic agents in the treatment of shock.
D W Landry, J A Oliver
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 215 | 9 |
79 | 49 | |
Scanned page | 132 | 9 |
Citation downloads | 56 | 0 |
Totals | 482 | 67 |
Total Views | 549 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.