Transforming growth factor beta (TGF beta) is a multifunctional protein which has been suggested to play a central role in the pathogenesis of chronic inflammation and fibrosis. Nasal polyposis is a condition affecting the upper airways characterized by the presence of chronic inflammation and varying degrees of fibrosis. To examine the potential role of TGF beta in the pathogenesis of this condition, we investigated gene expression and cytokine production in nasal polyp tissues as well as in the normal nasal mucosa. By Northern blot analysis using a porcine TGF beta 1 cDNA probe, we detected TGF beta 1-specific mRNA in nasal polyp tissues, as well as in the tissue from a patient with allergic rhinitis, but not in the normal nasal mucosa. By the combination of tissue section staining with chromotrope 2R with in situ hybridization using the same TGF beta 1 probe, we found that approximately 50% of the eosinophils infiltrating the polyp tissue express the TGF beta 1 gene. In addition, immunohistochemical localization of TGF beta 1 was detected associated with extracellular matrix as well as in cells in the stroma. These results suggest that in nasal polyposis where eosinophils are the most prevalent inflammatory cell, TGF beta 1 synthesized by these cells may contribute to the structural abnormalities such as stromal fibrosis and basement membrane thickening which characterize this disease.
I Ohno, R G Lea, K C Flanders, D A Clark, D Banwatt, J Dolovich, J Denburg, C B Harley, J Gauldie, M Jordana
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 246 | 1 |
104 | 37 | |
Figure | 0 | 1 |
Scanned page | 287 | 5 |
Citation downloads | 57 | 0 |
Totals | 694 | 44 |
Total Views | 738 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.