Eosinophil granule major basic protein (MBP), a potent toxin for helminths and mammalian cells in vitro, is a single polypeptide chain rich in arginine. MBP has been localized on damaged helminths and tissues in hypersensitivity diseases including bronchial asthma. The MBP cDNA indicates that MBP is translated as a slightly acidic preproprotein with an acidic propart. To test the hypothesis that the acidic pro-part of proMBP inhibits the toxicity of mature MBP, acidic polyamino acids (aa) were used as antagonists of MBP toxicity to K562 cells and guinea pig tracheal epithelium and used as antagonists of MBP airway hyperresponsiveness in primates. The acidic poly aa inhibited MBP toxicity and MBP airway hyperresposiveness. The acidic poly aa inhibited MBP toxicity in a charge-dependent manner similar to that proposed for proMBP, suggesting that the acidic pro-part of proMBP functions to mask mature MBP toxicity. This inhibition was not limited to MBP, but also applied to polyarginine and eosinophil cationic protein. These acidic poly aa may be useful to inhibit the actions of a number of cationic toxins released by the eosinophil in numerous hypersensitivity diseases.
R L Barker, R H Gundel, G J Gleich, J L Checkel, D A Loegering, L R Pease, K J Hamann
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 158 | 8 |
61 | 22 | |
Figure | 0 | 1 |
Scanned page | 270 | 3 |
Citation downloads | 54 | 0 |
Totals | 543 | 34 |
Total Views | 577 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.