Advertisement
Research Article Free access | 10.1172/JCI115117
Department of Medicine, Indiana University School of Medicine, Indianapolis 46202-5124.
Find articles by Baron, A. in: JCI | PubMed | Google Scholar
Department of Medicine, Indiana University School of Medicine, Indianapolis 46202-5124.
Find articles by Laakso, M. in: JCI | PubMed | Google Scholar
Department of Medicine, Indiana University School of Medicine, Indianapolis 46202-5124.
Find articles by Brechtel, G. in: JCI | PubMed | Google Scholar
Department of Medicine, Indiana University School of Medicine, Indianapolis 46202-5124.
Find articles by Edelman, S. in: JCI | PubMed | Google Scholar
Published April 1, 1991 - More info
We have estimated the capacity and affinity of insulin-mediated glucose uptake (IMGU) in whole body and in leg muscle of obese non-insulin-dependent diabetics (NIDDM, n = 6) with severe hyperglycemia, glycohemoglobin (GHb 14.4 +/- 1.2%), lean controls (ln, n = 7) and obese nondiabetic controls (ob, n = 7). Mean +/- SEM weight (kg) was 67 +/- 2 (ln), 100 +/- 7 (ob), and 114 +/- 11 (NIDDM), P = NS between obese groups. NIDDM were also studied after 3 wk of intensive insulin therapy, GHb post therapy was 10.1 +/- 0.9, P less than 0.01 vs. pretherapy. Insulin (120 mu/m2 per min) was infused and the arterial blood glucose (G) sequentially maintained at approximately 4, 7, 12, and 21 mmol/liter utilizing the G clamp technique. Leg glucose uptake (LGU) was calculated as the product of the femoral arteriovenous glucose difference (FAVGd) and leg blood flow measured by thermodilution. Compared to ln, ob and NIDDM had significantly lower rates of whole body IMGU and LGU at all G levels. Compared to ob, the NIDDM exhibited approximately 50% and approximately 40% lower rates of whole body IMGU over the first two G levels (P less than 0.02) but did not differ at the highest G, P = NS. LGU was 83% lower in NIDDM vs. ob, P less than 0.05 at the first G level only. After insulin therapy NIDDM were indistinguishable from ob with respect to whole body IMGU or LGU at all G levels. A significant correlation was noted between the percent GHb and the EG50 (G at which 1/2 maximal FAVGd occurs) r = 0.73, P less than 0.05. Thus, (a) insulin resistance in NIDDM and obese subjects are characterized by similar decreases in capacity for skeletal muscle IMGU, but differs in that poorly controlled NIDDM display a decrease in affinity for skeletal muscle IMGU, and (b) this affinity defect is related to the degree of antecedent glycemic control and is reversible with insulin therapy, suggesting that it is an acquired defect.