Sandhoff disease is a recessively inherited lysosomal storage disease resulting from a deficiency of beta-hexosaminidase activity. The enzyme occurs in two major forms, beta-hexosaminidase A, composed of an alpha- and beta-subunit and beta-hexosaminidase B, composed of two beta-subunits. Both isozyme activities are deficient in Sandhoff disease, owing to mutations of the HEXB gene encoding the common beta-subunit. We have cloned and fully characterized a deletion at the HEXB gene from fibroblasts of a patient with the infantile form of Sandhoff disease. The deletion removes approximately 16 kb of DNA including the HEXB promoter, exons 1-5 and part of intron 5. It most likely arose from recombination between two Alu sequences, with the breakpoints occurring at the midpoint between the left and right arms in each case and regenerating an intact Alu element in the deletion sequence. The deletion allele accounts for 27% of the Sandhoff mutant alleles we analyzed. Two cell lines were shown to be homozygous for the deletion and both had the infantile form of the disease. Four additional patients were compound heterozygotes with other mutations, all of whom displayed a different clinical phenotype. Finally, the mutant allele was present in different ethnic backgrounds, suggesting that it may have been subject to genetic drift.
K Neote, B McInnes, D J Mahuran, R A Gravel
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 116 | 23 |
44 | 43 | |
Figure | 0 | 2 |
Scanned page | 306 | 11 |
Citation downloads | 52 | 0 |
Totals | 518 | 79 |
Total Views | 597 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.