The major determinant of meal-stimulated gastric acid secretion is the antral hormone gastrin. Decarboxylated amine derivatives of amino acids have been proposed as the final common mediators of gastrin secretion stimulated by a meal. We explored the cellular basis for this hypothesis using a recently developed isolated canine G-cell model. Both amino acids and, more potently, their corresponding amines, directly stimulated gastrin release. Amino acid-stimulated gastrin secretion was unaffected by decarboxylase inhibitors (alpha methyldopa, aminooxyacetic acid, and 4-deoxypyridoxine) but enhanced by bombesin, isobutylmethylxanthine, and dibutyryl cAMP. Somatostatin inhibited amino acid-stimulated gastrin release via a pertussis toxin-sensitive GTP-binding protein. In contrast, gastrin secretion induced by amines was unaltered by any of the various treatments. Our data indicate that amino acids and amines, either as primary constituents of an ingested meal or as metabolites of dietary proteins, act directly via separate mechanisms to stimulate gastrin secretion from G-cells.
J DelValle, T Yamada
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 119 | 4 |
47 | 22 | |
Scanned page | 165 | 3 |
Citation downloads | 50 | 0 |
Totals | 381 | 29 |
Total Views | 410 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.