We have examined the role of intrapulmonary TNF in a rat model of acute immune complex-triggered alveolitis. Intratracheal instillation of IgG anti-bovine serum albumin (anti-BSA) followed by intravenous infusion of BSA results in acute alveolitis. Over the 4-h course of evolving lung injury, a 10-fold increase in TNF activity occurred in bronchoalveolar lavage (BAL) fluid. Immunohistochemical analysis of lung sections and BAL cells revealed that alveolar macrophages are the chief source of TNF. Antibodies that specifically neutralize rat TNF activity were raised in rabbits immunized with recombinant mouse TNF alpha. When administered into the lungs with anti-BSA, anti-TNF resulted in a marked reduction (up to 61%) in lung injury. Intratracheal instillation of exogenous TNF alone, or in combination with anti-BSA, resulted in an increase in lung injury compared to controls. Morphometric analysis and measurements of myeloperoxidase activities in whole lung extracts from rats treated with anti-TNF revealed a marked reduction in neutrophils compared to positive controls. The anti-TNF antibody preparation did not inhibit in vitro complement activation or diminish neutrophil chemotactic activity present in activated rat serum. These data indicate that intrapulmonary TNF activity is required for the full development of acute immune complex-triggered alveolitis, that alveolar macrophages are the primary source of this cytokine, and that TNF participates in the pathogenesis of immune complex alveolitis through a mechanism involving neutrophil recruitment.
J S Warren, K R Yabroff, D G Remick, S L Kunkel, S W Chensue, R G Kunkel, K J Johnson, P A Ward
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 135 | 2 |
62 | 29 | |
Figure | 0 | 1 |
Scanned page | 371 | 9 |
Citation downloads | 52 | 0 |
Totals | 620 | 41 |
Total Views | 661 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.