Abstract

Ammonia production increases in several models of renal hypertrophy in vivo. The present study was designed to determine whether ammonia can directly modulate the growth of renal cells in the absence of a change in extracellular acidity. In serum-free media NH4Cl (0-20 mM) caused JTC cells and a primary culture of rabbit proximal tubule cells to hypertrophy (increase in cell protein content) in a dose-dependent fashion without a change in DNA synthesis. Studies in JTC cells revealed that the cell protein content increased as a result of both an increase in protein synthesis and a decrease in protein degradation. Total cell RNA content and ribosome number increased after NH4Cl exposure and the cell content of the lysosomal enzymes cathepsin B and L decreased. Inhibition of the Na+/H+ antiporter with amiloride did not prevent the hypertrophic response induced by NH4Cl. The results indicate that ammonia is an important modulator of renal cell growth and that hypertrophy can occur in the absence of functioning Na+/H+ antiport activity.

Authors

K Golchini, J Norman, R Bohman, I Kurtz

×

Other pages: