In proximal tubular cells ischemia is known to result in the redistribution of apical and basolateral domain-specific lipids and proteins into the alternate surface membrane domain. Since tight junctions are required for the maintenance of surface membrane polarity, the effect of ischemia on tight junction functional integrity was investigated. In vivo microperfusion of early loops of proximal tubules with ruthenium red (0.2%) in glutaraldehyde (2%) was used to gain selective access to and outline the apical surface membrane. Under control situations ruthenium red penetrated less than 10% of the tight junctions. After 5, 15, and 30 min of ischemia, however, there was a successive stepwise increase in tight junction penetration by ruthenium red to 29, 50, and 62%, respectively. This was associated with the rapid duration-dependent redistribution of basolateral membrane domain-specific lipids and NaK-ATPase into the apical membrane domain. Taken together, these data indicate that during ischemia proximal tubule tight junctions open, which in turn leads to the lateral intramembranous diffusion of membrane components into the alternate surface membrane domain.
B A Molitoris, S A Falk, R H Dahl
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 120 | 0 |
66 | 29 | |
Figure | 0 | 1 |
Scanned page | 203 | 11 |
Citation downloads | 38 | 0 |
Totals | 427 | 41 |
Total Views | 468 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.