Previous studies have demonstrated higher levels of adipose tissue lipoprotein lipase (LPL) catalytic activity in obese subjects, and in response to a meal. To examine the cellular mechanism of this increase in activity, LPL activity, immunoreactive mass, and mRNA level were measured in lean and obese subjects both before and 4 h after a carbohydrate-rich meal. Heparin-releasable (HR) LPL activity was approximately 2.5-fold higher in the 15 obese subjects, when compared with six lean subjects. However, there was no difference in LPL immunoreactive mass between the lean and obese subjects. In response to the meal, there was a 2.2-fold increase in total adipose tissue LPL activity in the lean subjects due to an increase in both the HR fraction, as well as the adipose fraction extracted with detergents. However, no increase in LPL immunoreactive mass was observed in any adipose tissue LPL fraction, resulting in an increase in LPL specific activity in response to the meal. In the obese subjects, there was no significant increase in LPL activity in response to feeding, and also no increase in immunoreactive mass or specific activity. After extraction of RNA, there was no difference in either the relative proportion of the 3.6- and 3.4-kb human LPL mRNA transcripts, nor in the quantity of LPL mRNA in response to feeding. Thus, these data suggest that the increase in LPL activity under these conditions occurs through a posttranslational activation of a previously inactive LPL precursor.
J M Ong, P A Kern
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 193 | 8 |
52 | 48 | |
Figure | 0 | 2 |
Scanned page | 196 | 10 |
Citation downloads | 34 | 0 |
Totals | 475 | 68 |
Total Views | 543 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.