The role of oxygenation in the pathogenesis of alcoholic liver injury was investigated in six baboons fed alcohol chronically and in six pair-fed controls. All animals fed alcohol developed fatty liver with, in addition, fibrosis in three. No evidence for hypoxia was found, both in the basal state and after ethanol at moderate (30 mM) or high (55 mM) levels, as shown by unchanged or even increased hepatic venous partial pressure of O2 and O2 saturation of hemoglobin in the tissue. In controls, ethanol administration resulted in enhanced O2 consumption (offset by a commitant increase in splanchnic blood flow), whereas in alcohol fed animals, there was no increase. At the moderate ethanol dose, the flow-independent O2 extraction, measured by reflectance spectroscopy on the liver surface, tended to increase in control animals only, whereas a significant decrease was observed after the high ethanol dose in the alcohol-treated baboons. This was associated with a marked shift in the mitochondrial redox level in the alcohol-fed (but not in control) baboons, with striking rises in splanchnic output of glutamic dehydrogenase and acetaldehyde, reflecting mitochondrial injury. Increased acetaldehyde, in turn, may aggravate the mitochondrial damage and exacerbate defective O2 utilization. Thus impaired O2 consumption rather than lack of O2 supply characterizes liver injury produced by high ethanol levels in baboons fed alcohol chronically.
C S Lieber, E Baraona, R Hernández-Muñoz, S Kubota, N Sato, S Kawano, T Matsumura, N Inatomi
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 124 | 0 |
35 | 24 | |
Scanned page | 261 | 10 |
Citation downloads | 43 | 0 |
Totals | 463 | 34 |
Total Views | 497 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.