The lytic effect of complement on human erythrocytes has been reported by others to increase when Na+ is substituted for K+ in the external medium. In this paper we have investigated the hypothesis that net loss of K+ through a K+ transport pathway protects erythrocytes from complement-induced colloidosmotic swelling and lysis. Antibody-sensitized human erythrocytes containing different intracellular cation concentrations (nystatin treatment) were exposed to low concentrations of guinea pig serum in media of different cation composition; complement lysis was assessed by the release of hemoglobin and the volume of the surviving cells estimated by their density distribution profiles. Complement-dependent swelling and lysis of erythrocytes (a) were limited by the presence of an outwardly directed K+ electrochemical gradient and (b) were enhanced by carbocyanine, a specific inhibitor of the Ca2+-activated K+ transport pathway, and by absence of Ca2+ in the external medium. We propose that during complement activation a rising cytosolic calcium triggers the Ca2+-activated K+ permeability pathway, the Gardos effect, produces a net K+, Cl- and water loss, and thus limits the colloidosmotic swelling and lysis of erythrocytes.
J A Halperin, C Brugnara, A Nicholson-Weller
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 102 | 0 |
54 | 19 | |
Scanned page | 168 | 5 |
Citation downloads | 36 | 0 |
Totals | 360 | 24 |
Total Views | 384 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.