We have examined the filterability of sickle erythrocytes, using an initial-flow-rate method, to determine whether sufficient hemoglobin S polymer forms at arterial oxygen saturation to adversely affect erythrocyte deformability. The amount of intracellular polymer was calculated as a function of oxygen saturation to estimate the polymerization tendency for each of eight patients with sickle cell anemia (SCA). Progressive reduction of oxygen tension within the arterial range caused a sudden loss of filterability of SCA erythrocytes through 5-micron-diam pores at a critical PO2 between 110 and 190 mmHg. This loss of filterability occurred at a higher PO2 than did morphological sickling, and the critical PO2 correlated significantly (r = 0.844-0.881, P less than 0.01) with the polymerization tendency for each patient. Study of density-gradient fractionated cells from four SCA patients indicated that the critical PO2 of dense cells was reached when only a small amount of polymer had formed, indicating the influence of this subpopulation on the results obtained for unfractionated cells. Impairment of erythrocyte filterability at high oxygen saturation (greater than 90%) suggests that small changes in oxygen saturation within the arterial circulation cause rheological impairment of sickle cells.
M A Green, C T Noguchi, A J Keidan, S S Marwah, J Stuart
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 117 | 7 |
50 | 35 | |
Figure | 0 | 1 |
Scanned page | 194 | 20 |
Citation downloads | 41 | 0 |
Totals | 402 | 63 |
Total Views | 465 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.