The possibility that corticosteroid cytotoxicity could be mediated by activation of poly(ADP-ribose) polymerase and consequent depletion of NAD and ATP was evaluated in steroid-sensitive S49.1 and steroid-resistant S49.143R mouse lymphoma cells and in lymphocytes from a patient with chronic lymphocytic leukemia. All cell types were shown to have the enzyme poly(ADP-ribose) polymerase and to increase activity in response to DNA strand breaks. Incubation of susceptible cells with 1 microM dexamethasone resulted in DNA strand breaks. Susceptible cells also showed a dose-dependent decrease in NAD and ATP that preceded loss of cell viability. These studies suggest that steroid-induced cytotoxicity in susceptible lymphocytes is due to the presence of DNA strand breaks that activate poly(ADP-ribose) polymerase to a sufficient degree to consume cellular pools of NAD with a consequent depletion of ATP and loss of cell viability.
N A Berger, S J Berger, D C Sudar, C W Distelhorst
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 108 | 1 |
62 | 20 | |
Scanned page | 240 | 2 |
Citation downloads | 58 | 0 |
Totals | 468 | 23 |
Total Views | 491 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.