To test whether insulin secretion is self-regulatory, canine pancreata were isolated and perfused in vitro and were infused with 0.3, 0.6, or 1.2 mU/ml exogenous insulin. Basal and arginine-stimulated concentrations of C-peptide, glucagon, and somatostatin were measured. There were no significant differences between basal secretion nor the increment of arginine-stimulated secretion for each respective hormone at each exogenous insulin concentration. The second preparation studied was a vascularly isolated, yet innervated, in situ perfused pancreas. Exogenous insulin (1 mU/kg per min) was infused "systemically"; the pancreas received no insulin. Endogenous pancreatic insulin and C-peptide secretion was suppressed, while pancreatic glucagon secretion increased during systemic insulin infusion. No changes in pancreatic hormone secretion occurred after the sympathetic nerves were sectioned. These results suggest that exogenous insulin does not directly suppress the B cell, but can suppress insulin secretion through an indirect neurally mediated, insulin-dependent nerve mechanism.
J Stagner, E Samols, K Polonsky, W Pugh
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 104 | 0 |
60 | 20 | |
Scanned page | 182 | 1 |
Citation downloads | 42 | 0 |
Totals | 388 | 21 |
Total Views | 409 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.