The present study was designed to compare high pressure pulmonary edema (HPPE) and oleic acid-induced low pressure pulmonary edema (OAPE) in dogs when similar amounts of extra vascular water were present in the lung. The high pressure edema was produced by intravenous fluid overload and by inflating an aortic balloon catheter (n = 6). The low pressure edema was produced by the injecting 0.08 mg/kg oleic acid suspended in 5 ml saline (n = 6). Comparison of the difference between initial control measurements and final measurements in the edematous states showed that the animals with OAPE had a greater fall in percent oxygen saturation and a greater increase in shunt fractions. The light microscopic studies showed that OAPE was associated with greater amounts of alveolar flooding than HPPE where the edema fluid was located to a greater extent in the peribronchial interstitial space. The electron microscopy studies showed that the alveolar flooding in OAPE was associated with epithelial disruption, and tracer studies carried out in rabbits showed that dextran (150,000 mol wt) could pass from blood to airspace and that dextran (40,000 mol wt) could pass from air-space to blood in OAPE. We conclude that epithelial disruption is responsible for the excessive alveolar flooding in OAPE and that this results in a greater impairment in gas exchange.
J S Montaner, J Tsang, K G Evans, J B Mullen, A R Burns, D C Walker, B Wiggs, J C Hogg
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 107 | 1 |
49 | 14 | |
Scanned page | 392 | 3 |
Citation downloads | 54 | 0 |
Totals | 602 | 18 |
Total Views | 620 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.