Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI112458

Stimulation of cholesteryl ester synthesis in mouse peritoneal macrophages by cholesterol-rich very low density lipoproteins from the Watanabe heritable hyperlipidemic rabbit, an animal model of familial hypercholesterolemia.

T Kita, M Yokode, Y Watanabe, S Narumiya, and C Kawai

Find articles by Kita, T. in: JCI | PubMed | Google Scholar

Find articles by Yokode, M. in: JCI | PubMed | Google Scholar

Find articles by Watanabe, Y. in: JCI | PubMed | Google Scholar

Find articles by Narumiya, S. in: JCI | PubMed | Google Scholar

Find articles by Kawai, C. in: JCI | PubMed | Google Scholar

Published May 1, 1986 - More info

Published in Volume 77, Issue 5 on May 1, 1986
J Clin Invest. 1986;77(5):1460–1465. https://doi.org/10.1172/JCI112458.
© 1986 The American Society for Clinical Investigation
Published May 1, 1986 - Version history
View PDF
Abstract

Cholesterol-rich very low density lipoproteins (VLDL) from the homozygous Watanabe heritable hyperlipidemic (WHHL) rabbit induced marked cholesteryl ester accumulation in mouse peritoneal macrophages. This WHHL rabbit, an animal model of human familial hypercholesterolemia, has severe hypercholesterolemia, cutaneous xanthomas, and fulminant atherosclerosis due to the deficiency of the low density lipoprotein (LDL) receptor. When incubated with mouse peritoneal macrophages, the VLDL from WHHL rabbit (WHHL-VLDL) stimulated cholesteryl [14C]oleate synthesis 124-fold more than did VLDL from the normal Japanese White rabbit (control-VLDL). The enhancement in cholesteryl ester synthesis and accumulation of WHHL-VLDL was due to the presence of a high affinity binding receptor site on the macrophage cell surface that mediated the uptake and lysosomal degradation of WHHL-VLDL. Competition studies showed that the uptake and degradation of 125I-WHHL-VLDL was inhibited by unlabeled excess WHHL-VLDL and beta-migrating VLDL (beta-VLDL), but not LDL. Furthermore, the degradation of WHHL-VLDL was not blocked by either fucoidin, polyinosinic acid, or polyguanylic acid, potent inhibitors of the acetylated (acetyl)-LDL binding site, or by acetyl-LDL. These results suggest that macrophages possess a high affinity receptor that recognizes the cholesterol-rich VLDL present in the plasma of the WHHL rabbit and that the receptor which mediates ingestion of WHHL-VLDL seems to be the same as that for beta-VLDL and leads to cholesteryl ester deposition within macrophages. Thus the uptake of the cholesterol-rich VLDL from the WHHL rabbit by macrophages in vivo may play a significant role in the pathogenesis of atherosclerosis in the WHHL rabbit.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1460
page 1460
icon of scanned page 1461
page 1461
icon of scanned page 1462
page 1462
icon of scanned page 1463
page 1463
icon of scanned page 1464
page 1464
icon of scanned page 1465
page 1465
Version history
  • Version 1 (May 1, 1986): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts