Cryptococcus neoformans is variably encapsulated in vitro, whereas in tissues it develops a large capsule. We observed that cells of a strain with thin capsules, when growing in a standard fungal culture medium, became heavily encapsulated when incubated in serum-free cell culture medium (Dulbecco's modified Eagle's medium [DME]). Capsule size was quantitated physically by measuring cell volume, and chemically by determining the content of a capsular monosaccharide, glucuronate. The CO2/HCO-3 couple stimulated capsule development, resulting in visible enlargement by 3 h after exposure to high CO2/HCO-3. The amount of capsule per cell was directly proportional to the total millimolar CO2/HCO-3 concentration between 24 and 2.4 mM at pH 7.35, but at constant PCO2 (40 torr) and varying [HCO-3], the cells were heavily encapsulated down to pH 6.8. Concentration of CO2/HCO-3 in the physiologic range increased elaboration of polysaccharide into the medium and slowed the cell generation time from 2 to 6 h. Four other first-passage clinical isolates were all heavily encapsulated in DME with CO2/HCO-3, but variably encapsulated in DME without CO2/HCO-3. Exposure of yeast to increased CO2/HCO-3 caused a marked reduction in complement-mediated phagocytosis by mouse macrophages. A stable clone was isolated which contained capsular polysaccharide, but lacked the CO2-inducible phenotype. This clone was avirulent for steroid-treated rabbits. Thus, the prevailing CO2 concentration in mammalian tissues may be one stimulus for capsular polysaccharide synthesis. This could serve as an adaptive mechanism favoring parasite survival in the host.
D L Granger, J R Perfect, D T Durack
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 234 | 6 |
66 | 38 | |
Figure | 0 | 3 |
Scanned page | 283 | 5 |
Citation downloads | 40 | 0 |
Totals | 623 | 52 |
Total Views | 675 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.