Several factors interact to maintain precise control of electrolyte transport in the mammalian cortical collecting duct. We have studied the effects of deoxycorticosterone, arginine vasopressin, and bradykinin on net transepithelial sodium and potassium transport in isolated, perfused rat cortical collecting ducts. Chronic administration of deoxycorticosterone to rats increased both sodium absorption and potassium secretion above very low basal levels. Consequently, deoxycorticosterone-treated rats were used for all remaining studies. Arginine vasopressin (10(-10) M in the bath) caused a sustained fourfold increase in net sodium absorption and a sustained threefold increase in net potassium secretion. Bradykinin (10(-9) M in the bath) caused a reversible 40-50% inhibition of net sodium absorption without affecting net potassium transport or the transepithelial potential difference. In the perfusate, up to 10(-6) M bradykinin had no effect. We conclude: As in rabbits, chronic deoxycorticosterone administration to rats increases sodium absorption and potassium secretion in cortical collecting ducts perfused in vitro. Arginine vasopressin causes a reversible increase in net potassium secretion and net sodium absorption. Bradykinin in the peritubular bathing solution reversibly inhibits net sodium absorption, possibly by affecting an electroneutral sodium transport pathway.
K Tomita, J J Pisano, M A Knepper
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 285 | 1 |
109 | 26 | |
Scanned page | 205 | 2 |
Citation downloads | 38 | 0 |
Totals | 637 | 29 |
Total Views | 666 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.