The effects of parathyroid hormone were studied on Ca2+ fluxes in canine renal proximal tubular basolateral membrane vesicles (BLMV). Efflux of Ca2+ from preloaded BLMV was found to be stimulated by an external Na+ gradient, and this was inhibited by the Na+ ionophore, monensin, and enhanced by intravesicular negative electrical potentials, which indicated electrogenic Na+/Ca2+ exchange activity. There was a Na+ gradient independent Ca2+ flux, but membrane binding of Ca2+ was excluded from contributing to the Na+ gradient-dependent efflux. The Na+ gradient-dependent flux of Ca2+ was very rapid, and even 2- and 5-s points may not fully represent absolute initial rates. It was saturable with respect to the interaction of Ca2+ and Na+ with an apparent (5 s) Km for Na+-dependent Ca2+ uptake of 10 microM, and an apparent (5 s) Vmax of 0.33 nmol/mg protein per 5 s. The Na+ concentration that yielded half maximal Ca2+ efflux (2 s) was 11 mM, and the Hill coefficient was two or greater. Both Na+ gradient dependent and independent Ca2+ efflux were decreased in BLMV prepared from kidneys of thyroparathyroidectomized (TPTX) dogs, and both were stimulated by parathyroid hormone (PTH) infusion to TPTX dogs. BLMV from TPTX dogs exhibited significantly reduced maximal stimulation of Na+ gradient-dependent Ca2+ uptake with an apparent (5 s) Vmax of 0.23 nmol/mg protein per 5 s, but the apparent Km was 8 microM, which was unchanged from normal. The Na+ gradient independent Ca2+ uptake was also reduced in BLMV from TPTX dogs compared with normal. Thus, PTH stimulated both Na+/Ca2+ exchange activity and Na+ independent Ca2+ flux. In vivo, the latter could result in an elevation of cytosolic Ca2+ by PTH, and this might contribute to the observed decrease in solute transport in the proximal tubule.
J E Scoble, S Mills, K A Hruska
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 135 | 0 |
89 | 17 | |
Scanned page | 362 | 5 |
Citation downloads | 33 | 0 |
Totals | 619 | 22 |
Total Views | 641 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.