Developmental aspects of taurocholate transport into ileal brush border membrane vesicles were studied in 2-wk-old (suckling), 3-wk-old (weanling), and 6-wk-old (adolescent) rats. Taurocholate uptake (picomoles per milligram protein) into brush border membrane vesicles prepared from 2-wk-old rats was similar under Na+ and K+ gradient conditions (outside greater than inside). By contrast, uptake in 3- and 6-wk-old rats was significantly enhanced at 20 s, and at 1, 2, and 5 min of incubation in the presence of a Na+ gradient when compared with a K+ gradient incubation (P less than 0.05). Under isotope exchange conditions, a plot of active uptake velocity versus taurocholate concentration (0.10-1.0 mM) in 2-wk-old rat membrane vesicles was linear and approached the horizontal axis, suggesting the absence of active transport. However, similar plots in 3- and 6-wk-old rats described a rectangular hyperbola, indicating a Na+-dependent, saturable cotransport system. Woolf-Augustinsson-Hofstee plots of the uptake velocity versus concentration data from 3- and 6-wk-old rat brush border membrane vesicles yielded Vmax values that were not significantly different, 844 and 884 pmol uptake/mg protein per 120 s, respectively. The respective Km values were 0.59 and 0.66 mM taurocholate. The induction of an electrochemical diffusion potential by incubating K+-loaded vesicles with valinomycin did not significantly enhance taurocholate uptake in 2-, 3-, or 6-wk-old rat vesicle preparations. These data indicate that taurocholate transport into rat ileal brush border membrane vesicles is mediated by an electroneutral, sodium-coupled, cotransport system that is incompletely developed in the 2-wk-old suckling rat but fully developed by the time of weaning at 3 wk of age.
J A Barnard, F K Ghishan, F A Wilson
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 112 | 2 |
53 | 22 | |
Scanned page | 162 | 7 |
Citation downloads | 38 | 0 |
Totals | 365 | 31 |
Total Views | 396 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.