Abstract
Familial hyperproinsulinemia, a hereditary syndrome in which individuals secrete high amounts of 9,000-mol wt proinsulin-like material, has been identified in two unrelated cohorts. Separate analysis of the material from each of the two cohorts had suggested that the proinsulin-like peptide was a conversion intermediate in which the C-peptide remained attached to the insulin B-chain in one case, whereas it was a conversion intermediate in which the C-peptide remained attached to the insulin A-chain in the other. To reinvestigate this apparent discrepancy, we have now used chemical, biochemical, immunochemical, and physical techniques to compare in parallel the structures of the immunoaffinity chromatography-purified, proinsulin-like peptides isolated from the serum of members of both families. Our results show that affected individuals in both cohorts secrete two-chained intermediates of proinsulin conversion in which the COOH-terminus of the C-peptide is extended by the insulin A-chain and from which the insulin B-chain is released by oxidative sulfitolysis. Analysis of the conversion intermediates by reverse-phase high-performance liquid chromatography using two different buffer systems showed that the proinsulin-related peptides from both families elute at a single position very near that of the normal intermediate des-Arg31, Arg32-proinsulin. Further, treatment of these peptides with acetic anhydride prevented trypsin-catalyzed cleavage of the C-peptide from the insulin A-chain, a result demonstrating the presence of Lys64 and the absence of Arg65 in both abnormal forms. We conclude that individuals from both cohorts with familial hyperproinsulinemia secret very similar or identical intermediates of proinsulin conversion in which the C-peptide remains attached to the insulin A chain and in which Arg65 has been replaced by another amino acid residue.
Authors
D C Robbins, S E Shoelson, A H Rubenstein, H S Tager
×
Download this citation for these citation managers:
Or, download this citation in these formats:
If you experience problems using these citation formats, send us feedback.