Changes in cytosolic free Ca may function as a second messenger in neutrophils. Since the plasma membrane seems to be a major regulator of intracellular Ca in many cells, we characterized an energy-dependent Ca transport system in plasma membrane-enriched fractions ("podosomes") from phorbol myristate acetate-stimulated guinea pig and human neutrophils. The active Ca transport system in guinea pig podosomes exhibited a high affinity for Ca (Michaelis constant [Km]Ca 280 +/- 120 nM) and a maximum velocity of 0.83 nmol Ca/mg protein per min. Uptake showed an absolute requirement for Mg ATP (Km ATP 67 microM), whereas other trinucleotides were inactive. Ca uptake was optimal at pH 7, was azide insensitive and temperature dependent. Vanadium, an inhibitor of the Ca/Mg ATPase of heart sarcolemma, inhibited Ca pump activity by 50% at 1 microM. Ca transport was not affected in a NaCl-containing medium, an observation arguing against the presence of a Na/Ca exchange system. Calmodulin at 0.5-10 micrograms/ml stimulated the Ca pumping activity of EGTA-washed podosomes. Calmodulin depletion decreased the affinity of the Ca pump for Ca (Km Ca 2.07 microM) and its readdition restored it (Km Ca 0.55 microM). ATP-dependent Ca transport by podosomes and phagocytic vesicles was inactivated by exposure to trypsin or to the nonpenetrating sulfhydryl reagent rho-chloromercuribenzene sulfonate. Human podosomes had a Ca uptake system with properties similar to those of the guinea pig. These findings demonstrate the presence of a Ca pump in the neutrophil plasma membrane, which is active at physiological concentrations of free cytosolic Ca. By changing Ca concentrations at the cell periphery, this pump could control various motile functions of the neutrophil, such as locomotion or degranulation.
H Lagast, P D Lew, F A Waldvogel
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 99 | 1 |
50 | 13 | |
Scanned page | 342 | 1 |
Citation downloads | 65 | 0 |
Totals | 556 | 15 |
Total Views | 571 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.