The binding of human 125I-labeled lactoferrin (LF) to a population of adherent mononuclear cells (ADMC) and nonrosetting lymphocytes (E-) was abolished by prior treatment of the cells with deoxyribonuclease (DNase), but not ribonuclease (RNase). When DNase-treated ADMC were incubated with exogenous DNA, the binding of 125I-LF was restored. Enzymatic digestion with other enzymes, trypsin, phospholipase D, and neuraminidase, did not significantly influence 125I-LF binding. Saturable binding of LF at 0 degrees C was demonstrated for both E- and ADMC, with equilibrium dissociated constants of 0.76 x 10(-6) M and 1.8 x 10(-6) M, respectively. E- cells bound 2.5 x 10(7) and ADMC bound 3.3 x 10(7) molecules of Lf at saturation. Cell membranes were isolated from ADMC, E- and E+ and reacted with 125I-labeled LF; significant binding was only seen with ADMC and E-. Prior treatment of the membranes with DNase abolished the binding. Immunofluorescence studies indicated that a population of ADMC and E-, but not E+, exhibited a peripheral staining pattern for LF. Prior treatment of ADMC and E- with DNase abolished the surface immunofluorescence. This study provides evidence that cell membrane DNA acts as a binding site for exogenous LF. This is a novel role for DNA that has not been previously reported. Furthermore, it points to a basic difference between E+ cells vs. ADMC and E- cells in respect to their possession of cell surface DNA.
R M Bennett, J Davis, S Campbell, S Portnoff
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 116 | 1 |
59 | 26 | |
Figure | 0 | 1 |
Scanned page | 307 | 9 |
Citation downloads | 45 | 0 |
Totals | 527 | 37 |
Total Views | 564 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.