Somatostatin (SRIF) is localized in the hypothalamus, extrahypothalamic brain, and throughout the gastrointestinal tract. Release of gastrointestinal SRIF-like immunoreactivity (SRIF-LI) is under nutrient regulation but the effect of nutrients on neural SRIF-LI is unknown. The present studies examined the effects of glucose uptake and metabolism and hormones influencing glucose disposition on SRIF-LI release from medial basal hypothalamus (MBH) and cerebral cortex (Cx) incubated in Krebs-Ringer bicarbonate containing bacitracin. After a preincubation to achieve stable secretion, tissues were incubated for 20 min in 14 mM glucose (basal) and then, for 20 min in fresh medium with test materials. MBH SRIF-LI release was inversely related to medium glucose concentration with release in the absence of glucose (235±42 pg/MBH per 20 min) more than five times that in the presence of 25 mM glucose (46±4 pg/20 min). In the presence of 14 mM glucose MBH SRIF-LI release was stimulated above basal by agents interfering with glucose uptake including 3-O-methyl-d-glucose (42 mM; 70±5 vs. 42±3 pg/20 min, P < 0.05), phlorizin (50 mM; 351±63 vs. 29±2 pg/20 min, P < 0.001) or cytochalasin B (20 μM; 110±7 vs. 22±2 pg/20 min, P < 0.001). Inhibition of glucose metabolism by 2-deoxy-d-glucose resulted in dose-related stimulation of MBH SRIF-LI release (maximal at 28 mM; 201±28 pg/20 min vs. 32±4 pg/20 min, P < 0.001). Viability of MBH was unimpaired by incubation in the absence of glucose or following exposure to 2-deoxy-d-glucose as determined by retention of SRIF-LI responsiveness to stimulation by potassium (60 mM) or neurotensin (5 μM). In contrast, Cx SRIF-LI release was slightly inhibited by decreases in medium glucose and unaffected by inhibition of glucose uptake or metabolism. These results provide evidence for nutrient regulation of MBH but not Cx SRIF-LI release and may explain inhibition of growth hormone seen in the rat in response to hypoglycemia. Insulin (10 nM-1 μM) stimulated MBH but not Cx SRIF-LI release while glucagon was without effect. Our previous demonstration that MBH SRIF-LI release was stimulated by somatomedin-C, but not insulin at physiologic concentrations, is consistent with an action of insulin through the somatomedin-C receptor at the doses studied. Our studies indicate a regional specificity for the control of SRIF secretion within the brain and suggests the possibility of a role for hypothalamic SRIF in metabolic regulation.
Michael Berelowitz, Daniel Dudlak, Lawrence A. Frohman
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 120 | 3 |
64 | 26 | |
Scanned page | 332 | 5 |
Citation downloads | 53 | 0 |
Totals | 569 | 34 |
Total Views | 603 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.