The effect of pulmonary blood flow on the exchange between the circulating was marginating pool of polymorphonuclear leukocytes (PMN) was examined in three sets of experiments. In the first we used the double indicator dilution technique with labeled PMN and erythrocytes (RBC) to calculate the percent extraction and percent recovery of PMN at different levels of cardiac output (CO). In the second group of experiments we took advantage of the wide range of blood flow in the lung to determine the effect of regional blood flow on regional PMN retention, and in the third set we measured total leukocyte (WBC) and PMN counts in simultaneous samples from the pulmonary artery and aorta over a wide range of cardiac output. The studies showed that 80-90% of the labeled PMN were removed in a single pass through the lung and that regional retention of labeled PMN and A-V differences for unlabeled PMN increased with decreasing blood flow. The data for regional retention of labeled PMN and the A-V differences observed for unlabeled cells both fit the equation Y = A + Be-cx (where A + B = 100), which showed that PMN accumulate in the lung as blood flow is reduced. We conclude that a dynamic equilibrium exists between the circulating and marginating pools of leukocytes in the lung and that blood flow primarily effects the reentry of cells into the circulating pool so that the marginating pool of PMN within the lung accumulates cells when blood flow is reduced below 7 ml/min per g.
B A Martin, J L Wright, H Thommasen, J C Hogg
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 101 | 2 |
43 | 16 | |
Scanned page | 244 | 1 |
Citation downloads | 35 | 0 |
Totals | 423 | 19 |
Total Views | 442 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.