Advertisement
Research Article Free access | 10.1172/JCI110557
Find articles by Schapira, M. in: JCI | PubMed | Google Scholar
Find articles by Despland, E. in: JCI | PubMed | Google Scholar
Find articles by Scott, C. in: JCI | PubMed | Google Scholar
Find articles by Boxer, L. in: JCI | PubMed | Google Scholar
Find articles by Colman, R. in: JCI | PubMed | Google Scholar
Published May 1, 1982 - More info
Exposure of human blood polymorphonuclear leukocytes (PMN) to purified active plasma kallikrein resulted in PMN aggregation when kallikrein was present at concentrations ranging from 0.4 to 0.6 U/ml (0.18-0.27 microM). Kallikrein-induced PMN aggregation was not mediated through C5-derived peptides, because identical responses were observed whether or not kallikrein had been preincubated with an antibody to C5. Moreover, kallikrein was specific for aggregating PMN, because no aggregation was observed with Factor XII active fragments (23 nM), Factor XIa (0.6 U/ml or 15nM), thrombin (1.6 microM), plasmin (2 microM), porcine pancreatic elastase (2 microM), bovine pancreatic chymotrypsin (2 microM), or bradykinin (1 microM). Bovine pancreatic trypsin (2 microM) aggregated PMN, but to a lesser extent than kallikrein (0.18 microM). Kallikrein was a potent aggregant agent for PMN because similar responses were observed with kallikrein (0.5 U/ml or 0.23 microM) and an optimal dose (0.2 microM) of N-formyl-methionyl-leucyl-phenylalanine. In addition, PMN incubation with kallikrein resulted in stimulation of their oxidative metabolism as assessed by an increased oxygen uptake. Neutropenia and leukostasis observed in diseases associated with activation of the contact phase system may be the result of PMN aggregation by plasma kallikrein.
Click on an image below to see the page. View PDF of the complete article