To investigate the greater fixation of C3 to the erythrocytes of patients with paroxysmal nocturnal hemoglobinuria (PNH) upon activation of complement, we have examined the formation and the reaction of the C3 nephritic factor-stabilized alternative pathway convertase made with purified components on normal and PNH erythrocytes. Each convertase complex converts four to five times more fluid-phase C3 to C3b when affixed to a PNH cell than when affixed to a normal cell. The greater activity of the convertase on PNH cells is not due to differences in the intrinsic or extrinsic stability of the convertase complex. The excessive binding of C3 to PNH cell si due to this increased conversion of fluid-phase C3, because the efficiency of binding of nascent C3b was identical for the two cell types. This is the first instance in which the enzyme activity of a complement complex has been shown to be increased by being affixed to an abnormal surface.
C J Parker, P J Baker, W F Rosse
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 99 | 2 |
60 | 17 | |
Scanned page | 278 | 3 |
Citation downloads | 35 | 0 |
Totals | 472 | 22 |
Total Views | 494 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.