Abstract

The interaction of exercise and insulin on glucose metabolism was examined in 10 healthy volunteers. Four study protocols were used: study 1: plasma insulin was raised by approximately 100 microunits/ml while plasma glucose was maintained at basal levels for 2 h (insulin clamp). Study 2: subjects performed 30 min of bicycle exercise at 40% of VO2 max. Study 3: an insulin clamp was performed as per study 1. Following 60 min of sustained hyperinsulinemia, however, subjects exercised for 30 min as per study 2. Study 4: subjects were studied as per study 3 except that catheters were inserted into the femoral artery and vein to quantitate leg glucose uptake. During the 60-90 min period of hyperinsulinemia (study 1), glucose uptake averaged 8.73 +/- 0.10 mg/kg per min. With exercise alone (study 2), the increment in peripheral glucose uptake was 1.43 +/- 0.30 mg/kg per min. When hyperinsulinemia and exercise were combined (study 3), glucose uptake averaged 15.06 +/- 0.98 mg/kg per min (P less than 0.01) and this was significantly (P less than 0.001) greater than the sum of glucose uptake when exercise and the insulin clamp were performed separately. The magnitude of rise in glucose uptake correlated closely with the increase in leg blood flow (r = 0.935, P less than 0.001), suggesting that the synergism is the result of increased blood flow and increased capillary surface area to exercising muscle. More than 85% of total body glucose metabolism during studies 1 and 3 was accounted for by skeletal muscle uptake. These results demonstrate that (a) insulin and exercise act synergistically to enhance glucose disposal in man, and (b) muscle is the primary tissue responsible for the increase in glucose metabolism following hyperinsulinemia and exercise.

Authors

R A DeFronzo, E Ferrannini, Y Sato, P Felig, J Wahren

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement