Cetiedil has been reported to relieve painful crises in sickle cell anemia and to have antisickling properties in vitro. The drug alters neither oxygen affinity nor the solubility of deoxyhemoglobin S. Because the viscosity of the erythrocyte interior and the kinetics of gelation are dependent on the concentration of hemoglobin, we postulated that cetiedil might inhibit sickling by modifying erythrocyte sodium or potassium movements in a manner that would increase cell water content and thus dilute the cell hemoglobin. The drug has two such effects: it inhibits the specific increase in potassium permeability that follows a rise in cytoplasmic calcium concentration and it causes a rise in passive sodium movements. These effects are further evidence that cell ion and water movements may be important in the process of sickling and suggest a mechanism for the results reported with cetiedil.
L R Berkowitz, E P Orringer
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 104 | 0 |
45 | 21 | |
Scanned page | 179 | 4 |
Citation downloads | 39 | 0 |
Totals | 367 | 25 |
Total Views | 392 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.