Pyrroline-5-carboxylate reductase, which converts pyrroline-5-carboxylate to proline, has been identified in human erythrocytes. The level of pyrroline-5-carboxylate reductase activity in these cells is comparable to the activity levels of major erythrocyte enzymes. The physiologic function of the enzyme in erythrocytes cannot be related to its function in other tissues, i.e., producing proline for protein synthesis. We examined the kinetic properties of erythrocyte pyrroline-5-carboxylate reductase and compared them to the properties of the enzyme from proliferating cultured human fibroblasts. We found that the kinetic properties and regulation of the erythrocyte enzyme are distinctly different from those for human fibroblast pyrroline-5-carboxylate reductase. These characteristics are consistent with the interpretation that the function of the enzyme in human erythrocytes may be to generate oxidizing potential in the form of NADP+.
G C Yeh, S C Harris, J M Phang
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 117 | 5 |
52 | 29 | |
Scanned page | 187 | 2 |
Citation downloads | 43 | 0 |
Totals | 399 | 36 |
Total Views | 435 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.