Our recent in vivo studies have suggested that intrapituitary l-thyroxine (T4) to 3,5,3′-triiodo-l-thyronine (T3) conversion with subsequent nuclear binding of T3 is an important pathway by which circulating T4 can inhibit thyrotropin release. The present studies were performed to evaluate various physiological and pharmacological influences on these two processes in rat anterior pituitary tissue. Intact pituitary fragments were incubated in buffer—1% bovine serum albumin containing 0.14 ng/ml [131I]T3 and 3.8 ng/ml [125I]T4. Nuclei were isolated after 3 h of incubation and the bound iodothyronines identified by paper chromatography. There was 0.3-1% [125I]T3 contaminating the medium [125I]T4, and this did not change during incubation. Nuclear [125I]T4 was not decreased by 650-fold excesses of medium T3 or T4, suggesting that it was nonspecifically bound. The ratio of nuclear to medium [131I]- and [125I]T3 were expressed as nuclear counts per minute per milligram wet weight of tissue:counts per minute per microliter medium. Intrapituitary T4 to T3 conversion was evidenced by the fact that the nuclear:medium (N:M) ratio for [131I]T3 was 0.45±0.21, whereas that for [125I]T3 was 2.23±1.28 (mean±SD, n = 51). A ratio (R), the N:M [125I]T3 divided by the N:M [131I]T3, was used as an index of intrapituitary T4 to T3 conversion. Increasing medium T3 concentrations up to 50 ng/ml caused a progressive decrease in the N:M ratio for both T3 isotopes, but no change in the value for R, indicating that both competed for the same limited-capacity nuclear receptors. Increasing concentrations of medium T4 caused no change in the N:M [131I]T3 but did cause a significant decrease in R in three of four experiments. These results suggest saturation of T4-5′-monodeiodination occurred at lower T4 concentrations than saturation of nuclear T3 binding sites. In hypothyroid rats, the N:M ratios for both [131I]T3 and [125I]T3 were increased (P < 0.005), but R was three-fold higher than in controls (P < 0.005). Animals given 10 μg T4/100 g body wt per d for 5 d had significantly decreased N:M ratios for both [131I]T3 and [125I]T3, as well as a decreased value for R. In fasted rats, neither N:M ratio was depressed, although hepatic T4 to T3 conversion in the same animals was 50% of control (P < 0.005). Iopanoic acid (13 μM), but not 6-n-propylthiouracil (29 μM), decreased the N:M [125I]T3 with a significant decrease in the value for R (P < 0.025 or less). Neither sodium iodide (6 μM) nor thyrotropin-releasing hormone (7-700 nM) affected the T3 N:M ratios. These results indicate that intrapituitary T4 to T3 conversion is stimulated in hypothyroidism and depressed in T4-treated animals, whereas opposite changes occur in hepatic T4-5′-monodeiodination. Unlike liver, anterior pituitary T4-5′-monodeiodination is not affected by fasting or incubation with 6-n-propyl-2-thiouracil, but T4 to T3 conversion is inhibited in both by iopanoic acid. These results indicate that there are important differences between anterior pituitary and other tissues in the regulation of T4-5′-monodeiodination.
R. G. Cheron, M. M. Kaplan, P. R. Larsen
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 129 | 4 |
68 | 21 | |
Scanned page | 543 | 4 |
Citation downloads | 63 | 0 |
Totals | 803 | 29 |
Total Views | 832 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.