Under certain conditions, exogenously administered cholecystokinin (CCK) or its COOH-terminal octapeptide can terminate feeding and cause behavioral satiety in animals. Furthermore, high concentrations of CCK are normally found in the brains of vertebrate species. It has thus been hypothesized that brain CCK plays a role in the control of appetite. To explore this possibility, a COOH-terminal radioimmunoassay was used to measure concentrations of CCK in the cerebral cortex, hypothalamus, and brain stem of rats and mice after a variety of nutritional manipulations. CCK, mainly in the form of its COOH-terminal octapeptide, was found to appear in rat brain shortly before birth and to increase rapidly in cortex and brain stem throughout the first 5 wk of life. Severe early undernutrition had no effect on the normal pattern of CCK development in rat brain. Adult rats deprived of food for up to 72 h and rats made hyperphagic with highly palatable diets showed no alterations in brain CCK concentrations or distribution of molecular forms of CCK as determined by Sephadex gel filtration of brain extracts. Normal CCK concentrations were also found in the brains of four strains of genetically obese rodents and in the brains of six animals made hyperphagic and obese by surgical or chemical lesioning of the ventromedial hypothalamus. It is concluded that despite extreme variations in the nutritional status of rats and mice, CCK concentrations in major structures of the brain are maintained with remarkable constancy.
B S Schneider, J W Monahan, J Hirsch
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 128 | 3 |
65 | 22 | |
Scanned page | 357 | 23 |
Citation downloads | 56 | 0 |
Totals | 606 | 48 |
Total Views | 654 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.