Electrolyte fluxes are fundamental to normal endocrine pancreatic function. Adenosine triphosphatases (ATPases) are enzyme systems believed to modulate electrolyte movements across membranes in a number of cell types. This study was undertaken to measure cation-dependent ATPases of rat pancreatic islets. In addition, we compared effects of substances which influence endocrine pancreatic function upon ATPases in homogenates of islets and kidney, the latter being a tissue which would not be expected to have a stimulus-secretion response to substances which activate islets.
Seymour R. Levin, Barry G. Kasson, June F. Driessen
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 107 | 0 |
57 | 15 | |
Scanned page | 325 | 5 |
Citation downloads | 45 | 0 |
Totals | 534 | 20 |
Total Views | 554 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.