Purine nucleoside phosphorylase (PNP) deficiency is associated with a severe defect in thymus-derived (T)-lymphocyte function combined with normal bone marrow-derived (B)-lymphocyte function. To investigate the role of this enzyme deficiency in the resulting immune dysfunction, we measured the levels of ribonucleoside and deoxyribonucleoside triphosphates in erythrocytes from two unrelated PNP-deficient, T-lymphocyte-deficient patients. Both PNP-deficient patients have abnormally high levels of deoxyguanosine triphosphate (deoxy-GTP) in their erythrocytes (5 and 8 nmol/ml packed erythrocytes). In contrast, normal controls and adenosine deaminase-deficient, immunodeficient patients do not have detectable amounts of deoxyGTP (<0.5 nmol/ml packed erythrocytes). We propose that deoxyguanosine, a substrate of PNP, is the potentially lymphotoxic metabolite in PNP deficiency. The mechanism of toxicity involves phosphorylation of deoxyguanosine to deoxyGTP, which acts as a potent inhibitor of mammalian ribonucleotide reductase.
Amos Cohen, Lorraine J. Gudas, Arthur J. Ammann, Gerard E. J. Staal, David W. Martin Jr.
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 175 | 4 |
51 | 27 | |
Scanned page | 175 | 13 |
Citation downloads | 46 | 0 |
Totals | 447 | 44 |
Total Views | 491 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.