The present study demonstrates the existence on human peripheral blood lymphocytes of a saturable cell surface receptor for low density lipoprotein inhibitor (LDL-In), a subset of normal human serum low density lipoprotein (LDL) that has been previously demonstrated to suppress selected lymphocyte functions in vivo and in vitro. The binding of radioiodinated LDL-In of demonstrable biological activity occurs rapidly and is quantitatively augmented by prior cultivation of the lymphocytes in lipoprotein-depleted serum, suggesting regulation of receptor density by lipoproteins in vivo. Binding is temperature dependent, facilitated by calcium ions, saturable at 4 degrees C within 40-60 min, and blocked by prior exposure to unlabeled LDL-In. The lymphocyte receptor is trypsin sensitive and regenerates in vitro with a t1/2 of 3.6 h. LDL-In receptors are calculated to have a maximum density of 4,860 +/- 460 per cell if uniformly distributed on all lymphocyte subsets. These receptors have an estimated average association constant of 1.47 X 10(7) liters/mol. When considered in context of the estimated concentration of LDL-In in blood, the receptors should be partially occupied in vivo by endogenous plasma LDL-In. Prior site occupancy inhibition experiments designed to analyze the specificity of LDL-In binding demonstrate that (a) LDL-In is 13.7-fold more effective than whole LDL in blocking the subsequent binding of 125I-LDL-In to cells; and that (b) LDL is 11-fold more effective than LDL-In in blocking the binding of 125I-LKL. This is consistent with the degree of contamination of each lipoprotein with the other lipoprotein. An independent identity of the LDL-In receptor is also supported by observations that in contrast to the previously described LDL receptor, synthesis and expression of the LDL-In receptor on lymphocytes are not suppressed by cultivation of the cells in the presence of 25-hydroxycholesterol and cholesterol. These findings suggest the existence of a previously undescribed and discrete receptor on lymphocytes for LDL-In, and that the modulation of lymphocyte function by LDL-In may be mediated by a specific cell surface receptor pathway.
L K Curtiss, T S Edgington
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 111 | 0 |
84 | 16 | |
Scanned page | 461 | 4 |
Citation downloads | 59 | 0 |
Totals | 715 | 20 |
Total Views | 735 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.