To evaluate the influence of glucose infusate administered with insulin and potassium on left ventricular function during 4 h of ischemia, as well as mechanism of action, four groups of intact anesthetized dogs were studied. Acute regional ischemia was induced with a balloon tip catheter in the left anterior descending artery and infusates were begun after 20 min of ischemia. A threefold increase of plasma glucose concentration was associated with improved left ventricular function during ischemia, compared to animals receiving isovolumic saline. There was a significant decline of left ventricular end-diastolic pressure associated with elevation of stroke volume and ejection fraction to control levels, as determined by indicator dilution. In a separate subgroup studied by cineangiography, shortening of the ischemic anterior wall, after an initial decline, was increased in response to glucose but there was no evidence of extension of injury. Ischemic tissue exhibited a smaller gain of water as well as Na+ per gram dry weight as compared to ischemic controls. On precordial electrocardiogram mapping there was a significant decrease in the sigmaST (sum of ST elevation) as well as NST (number of ST segment elevations), but the reduction of R wave amplitude was not different from controls. To further evaluate long-term effects, eight controls and six treated animals underwent myocardial ischemia and were sacrificed after 4 mo. Calculated area and weight of scar, as well as degree of wall thinning, were similar in both groups. The glucose-treated animals had a significant decrease of plasma FFA in contrast to controls which manifested a significant rise. To examine the postulate that the decrease in FFA was important to therapeutic action, a third group was infused with Intralipid (Cutter Laboratories, Inc., Berkeley, Calif.) and heparin, simultaneously with the glucose infusate, to effect an elevation of plasma FFA during ischemia. Changes in myocardial function and electrolyte composition, as well as precordial electrocardiogram mapping, were similar to that of animals receiving glucose alone. Because serum osmolality was increased approximately 40 mosmol during the glucose infusion, the potential role of hyperosmolality was assessed by infusion of 20% mannitol during acute ischemia in a fourth group. After a transient small increase, there was a moderate decline in function by 4 h, suggesting that the response to glucose is not dependent upon extracellular osmolality. Thus, it is concluded that during the initial hours after the onset of myocardial ischemia the glucose infusate improves ventricular performance without evidence of arrhythmia induction or intensification of ischemic injury. Evolution of irreversible necrosis appears to be delayed rather than prevented under the circumstances of this study.
S S Ahmed, C H Lee, H A Oldewurtel, T J Regan
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 150 | 3 |
75 | 18 | |
Scanned page | 520 | 7 |
Citation downloads | 55 | 0 |
Totals | 800 | 28 |
Total Views | 828 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.