To estimate the relative contribution of l-triiodothyronine (T3) and l-thyroxine (T4) to thyroidal effects, we have measured the concentration of iodothyronine bound to specific hepatic nuclear receptor sites by three different techniques: (a) specific radioimmunoassay after separation of T3 and T4 by preparative paper chromatography; (b) in vivo kinetic approaches as reported previously; and (c) isotopic equilibration. By these three methods, receptor concentration of T3 and T4 in liver was 0.51±0.19 (SD) and 0.08±0.06; 0.52±0.12 and 0.08±0.02; and 0.50±0.13 and 0.10±0.03 pmol/mg DNA, respectively. The percentage contribution of T3 and T4 to total receptor iodothyronine was thus 86.8±9.0 and 13.2±9.4; 86.3±3.5 and 13.7±3.5; and 83.7±5.6 and 16.3±5.6%, respectively. In kidney, specifically bound nuclear T3 and T4 were estimated both by isotopic equilibration and by in vivo kinetic techniques to be 0.28±0.11 and 0.03±0.01 pmol/mg DNA, respectively. Thus, T3 constituted 89.4±3.2% of total receptor iodothyronine in this tissue. No other iodothyronines or analogs were bound to the nuclear sites in either tissue. Kidney and liver nuclear T3 concentrations also were identical to values previously reported with in vivo kinetic techniques. Other studies from this laboratory have suggested that thyroid effect is related to the molar concentration of iodothyronine bound to specific nuclear sites, that the sites are similar in various tissues, and that iodothyronine in plasma is in equilibrium with nuclear T3. If these relationships are assumed, T3 contributes between 85 and 90% of thyroidal effects in the euthyroid rat. The remaining 10-15% of thyroidal effect appears to result from the intrinsic activity of T4.
Martin I. Surks, Jack H. Oppenheimer
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 140 | 4 |
68 | 18 | |
Scanned page | 387 | 4 |
Citation downloads | 61 | 0 |
Totals | 656 | 26 |
Total Views | 682 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.