Previous studies from this laboratory demonstrated that secondary hyperparathyroidism in dogs with chronic renal disease may occur, at least in part, as a consequence of the need for progressive adaptation in renal phosphorus (P) excretion that occurs as glomerular filtration rate falls. However, the studies were of relatively short duration. Moreover, no information emerged regarding a potential role of calcium malabsorption in the pathogenesis of secondary hyperparathyroidism. The short duration of the protocol did not lend itself to the study of the effect of P control or the administration of vitamin D in the pathogenesis of renal osteodystrophy. In the present studies, 14 dogs with experimental chronic renal disease were studied serially for a period of 2 yr. Each animal was studied first with two normal kidneys on an intake of P of 1,200 mg/day. Then, renal insufficiency was produced by 5/6 nephrectomy. The dogs then were divided into three groups. In group I, 1,200 mg/day P intake was administered for the full 2 yr. In group II, P intake was reduced from the initial 1,200 mg/day, in proportion to the measured fall in glomerular filtration rate, in an effort to obviate the renal adaptation in P excretion. In group III, “proportional reduction” of P intake also was employed; but in addition, 20 μg of 25(OH)D3 were administered orally three times a week.
W. E. Rutherford, P. Bordier, P. Marie, K. Hruska, H. Harter, A. Greenwalt, J. Blondin, J. Haddad, N. Bricker, E. Slatopolsky
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 123 | 3 |
56 | 21 | |
Scanned page | 279 | 11 |
Citation downloads | 44 | 0 |
Totals | 502 | 35 |
Total Views | 537 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.