Collagen metabolism in osteoarthritic human articular cartilage was compared to that in normal cartilage and was also correlated with the degree of severity of the osteoarthritic lesion as determined by a histological-histochemical grading system. No correlation was apparent between the concentrations of DNA, hydroxyproline, and hydroxylysine and the degree of severity of the osteoarthritic lesion (except in far-advanced lesions). Similarly, there was no correlation in levels of these components in tissues from the normal vs. osteoarthritic group. The similarity of the values of the ratio hydroxylysine/hydroxyproline in osteoarthritic tissue compared with normal, and the lack of variation in these with increasing severity of the disease process argues against the possibility that osteoarthritis is associated with a major shift in the synthesis of type II collagen to type I. [3H]Proline incorporation into osteoarthritic cartilage was increased fourfold as compared to normal cartilage and varied with advancing histological-histochemical grade. Measurement of the specific activity of insolubilized hydroxyproline-containing material of the cartilage matrix, as an index of the turnover of collagen, showed a sixfold increase in osteoarthritic cartilage which also varied with grade. These data suggest that collagen synthesis in these tissues is substantially greater than in nonosteoarthritic tissues and varies directly with the severity of the disease process up to a point and then varies inversely as the lesion becomes more severe.
L Lippiello, D Hall, H J Mankin
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 398 | 2 |
139 | 30 | |
Scanned page | 331 | 7 |
Citation downloads | 49 | 0 |
Totals | 917 | 39 |
Total Views | 956 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.