Recent models of the urinary concentrating mechanism have postulated that urea in the medullary interstitium creates a transtubular concentration gradient for sodium between fluid at the end of the descending limb of Henle's loop and the medullary interstitium, favoring the passive outward movement of sodium from Henle's thin ascending limb. These experiments were designed to determine whether such a gradient normally exists. Young nondiuretic Munich-Wistar rats were prepared for micropuncture of the exposed left renal papilla. Samples of loop of Henle fluid and vasa recta plasma (assumed to reflect the composition of interstitial fluid) were obtained from adjacent sites. Loop fluid values in 21 comparisons from 18 rats (mean +/- SE) were: sodium 344 +/- 12 meq/liter; potassium, 26 +/- 2 meq/liter; osmolality, 938 +/- 37 mosmol/kg H23. Vasa recta plasma values (in corresponding units of measurement) were: sodium, 284 +/- 11; potassium, 34 +/- 2; osmolality, 935 +/- 34. Mean values of paired differences (loop fluid minus vasa recta plasma) were: delta sodium, 60 +/- 11.1 (P less than 0.001); delta potassium, -8.0 +/- 2.1 (P less than 0.001); delta osmolality, 4 +/- 16 (NS). Corrected for plasma water, the loop fluid minus vasa recta differences (in milliequivalents per kilogram H2O) were: delta sodium, 40 +/- 11.4 (P less than 0.005); delta potassium, -9.7 +/- 1.9 (P less than 0.001). We interpret these findings to indicate that in the papilla of nondiuretic rats, a significant difference in sodium concentration exists across the thin loop of Henle favoring outward movement of sodium, which confirms a key requirement of the passive models. A concentration difference for potassium in the reverse direction was also observed.
P A Johnston, C A Battilana, F B Lacy, R L Jamison
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 103 | 2 |
55 | 15 | |
Scanned page | 228 | 14 |
Citation downloads | 46 | 0 |
Totals | 432 | 31 |
Total Views | 463 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.