The present work was undertaken to explore the effect of two purified neutral proteases derived from human peripheral blood polymorphonuclear leukocytes (PMN) on articular cartilage as a model of joint injury. Human leukocyte elastase and chymotrypsin-like enzyme, purified by affinity chromatography, released 32SO4 from labeled rabbit articular cartilage slices in vitro. Release of isotope was initially delayed, suggesting that either a lag in enzyme penetration occurs or that size of degradation fragments is a limiting factor in diffusion of label out of the tissue. The release of 35SO4 was inhibited by preincubation of elastase and chymotrypsin-like enzyme with human alpha 1-anti-trypsin, or with their specific chloromethyl ketone inactivators, and the action of elastase was also inhibited by a monospecific antiserum to PMN elastase, freed of major serum proteinase inhibitors. Immunohistochemical staining procedures revealed the presence of PMN elastase inside the matrix of cartilage slices after a 20-min exposure of tissue to either the pure enzyme or crude PMN granule extract. Serum alpha 1-antitrypsin failed to penetrate into the cartilage slices under identical in vitro conditions. In association with the results reported in the accompanying paper, these findings suggest a model of cartilage matrix degradation by PMN neutral proteases in which local protease-antiprotease imbalance, coupled with different rates of penetration of protease and antiprotease into target tissue, plays a key role in accounting for matrix damage.
A Janoff, G Feinstein, C J Malemud, J M Elias
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 125 | 0 |
67 | 22 | |
Figure | 0 | 1 |
Scanned page | 386 | 4 |
Citation downloads | 49 | 0 |
Totals | 627 | 27 |
Total Views | 654 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.