Palmitate, glucose, and glycerol oxidation to CO2 have been investigated in the fasted state in ten normal subjects and nine patients (six hyperlipoproteinemias, one xanthomatosis, and two glycogenosis) after intravenous injection of [1-14C]palmitate, [1-14C]glucose, or [1-14C]glycerol in tracer amounts. The specific activities and concentrations of plasma palmitate, glycerol, or glucose and expired CO2 were measured at various intervals after the injection for a period of 24 h. All the studies were analyzed in terms of a multicompartment model describing the structure for each of the subsystems, the transfer of carbon label between subsystems, and the oxidation to CO2. A bicarbonate subsystem was also included in the model to account for its role in shaping the CO2 curves.
C. L. Malmendier, C. Delcroix, M. Berman
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 90 | 1 |
60 | 26 | |
Scanned page | 606 | 11 |
Citation downloads | 58 | 0 |
Totals | 814 | 38 |
Total Views | 852 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.