Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Coronary Hemodynamics and Regional Myocardial Metabolism in Experimental Aortic Insufficiency
Douglas M. Griggs Jr., Chin Chi Chen
Douglas M. Griggs Jr., Chin Chi Chen
Published June 1, 1974
Citation Information: J Clin Invest. 1974;53(6):1599-1606. https://doi.org/10.1172/JCI107710.
View: Text | PDF
Research Article

Coronary Hemodynamics and Regional Myocardial Metabolism in Experimental Aortic Insufficiency

  • Text
  • PDF
Abstract

Acute aortic valvular insufficiency was induced in open chest dogs by employing a special intravascular cannula, or by rupturing an aortic valve leaflet. Phasic and mean coronary flow were assessed in some animals, while in others data were obtained on arterial and coronary sinus blood lactate, pyruvate, PO2, PCO2, and pH, and on myocardial tissue lactate, pyruvate, and water content in the outer and inner halves of the free wall of the left ventricle. Results showed that in acute aortic insufficiency diastolic coronary flow decreased as a function of aortic diastolic pressure, but systolic coronary flow increased in such proportion that mean coronary flow did not decrease. With moderate reductions in aortic diastolic pressure due to aortic insufficiency, myocardial blood flow was judged to be nutritionally adequate in both the outer and inner regions of the left ventricle. With more severe reductions in aortic diastolic pressure, the inner region exihibited biochemical signs of anaerobic metabolism. The presence of these metabolic changes could be correlated with either of two previously described pressure indexes. These findings suggest that the reduced coronary perfusion pressure and the intramyocardial tissue pressure gradient can be compensated for by autoregulation in some cases of aortic insufficiency, but in others such compensation may be incomplete, in which case oxygen delivery to the subendocardium will be inadequate to meet local tissue oxygen needs.

Authors

Douglas M. Griggs Jr., Chin Chi Chen

×

Usage data is cumulative from January 2024 through January 2025.

Usage JCI PMC
Text version 90 0
PDF 52 18
Scanned page 209 1
Citation downloads 35 0
Totals 386 19
Total Views 405
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts