The purpose of this study was to determine whether the level of arterial pressure and degree of baroreceptor activation affect responses to stimulation of chemoreceptors. Chemoreceptors were stimulated by injecting nicotine into the common carotid artery of anesthetized and paralyzed dogs. Responses were observed in the innervated gracilis muscle, perfused at constant flow while perfusion pressure was measured. Arterial pressure was lowered by bleeding the animals and raised by transient occlusion of the descending aorta. Vasoconstrictor responses to stimulation of chemoreceptors were enhanced by hypotension and inhibited by elevation of arterial pressure. Potentiation of the chemoreceptor reflex by hemorrhagic hypotension was not the result of altered vascular resistance in the gracilis muscle, sensitization of chemoreceptors by catecholamines or acidosis, or changes in cerebral perfusion pressure.
Donald D. Heistad, Francois M. Abboud, Allyn L. Mark, Phillip G. Schmid
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 278 | 18 |
56 | 47 | |
Scanned page | 332 | 3 |
Citation downloads | 34 | 0 |
Totals | 700 | 68 |
Total Views | 768 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.