The effects of 25-hydroxycholecalciferol were studied in 4 children with deficiency rickets and 22 children with D-resistant rickets, including patients with hereditary hypophosphatemic D-resistant rickets, “pseudo-deficiency” rickets, and rickets secondary to cystinosis or to tyrosinosis. Three protocols were used. (a) 8 days after a single oral dose of 16,000 IU of 25-hydroxycholecalciferol, normalization of all biological parameters was observed in all cases of deficiency rickets. A complete lack of response was observed in the different types of resistant rickets. (b) Under prolonged administration of 2,640 IU/day for 2 months, clinical-biological symptoms and X-ray lesions disappeared, and a catch-up growth pattern was observed in deficiency rickets; no relapse of rickets occurred up to 5 months after therapy was stopped. The same dose had no significant effect in 10 patients with hereditary hypophosphatemic D-resistant rickets. A bone biopsy performed in one case showed the persistence of characteristic lesions. (c) With increasing doses of 25-hydroxycholecalciferol varying from 6,000 to 30,000 IU/day and a follow-up of 6 months up to 2 yr duration, clinical-biological-radiologic recovery and catch-up growht was obtained in all cases of “pseudo-deficiency” rickets. In hypophosphatemic hereditary D-resistant rickets, 5 out of 13 patients' serum concentration of phosphorus reached at least 30 mg/liter, but a catch-up growth pattern was not observed. These results indicate that (a) 25-hydroxycholecalciferol is highly active in deficiency rickets; (b) a defect in the conversion of vitamin D3 to its active 25-hydroxy metabolite is probably not the metabolic defect in any of the different types of vitamin D-resistant rickets studied.
Sonia Balsan, Michele Garabedian
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 163 | 6 |
60 | 50 | |
Scanned page | 447 | 10 |
Citation downloads | 58 | 0 |
Totals | 728 | 66 |
Total Views | 794 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.