To assess the ion transport mechanism by which cholera causes the small bowel to secrete, ion transport rates and electrical potential difference (PD) were determined simultaneously in the normal and choleragen-treated dog ileum in vivo. The results indicate that, during cholera, HCO3 is actively secreted (i.e., against both an electrical and a concentration gradient); Cl is also actively secreted, against a modest electrochemical gradient. Electrogenic pumping of one or both of these anions is probably responsible for an observed PD change of approximately 13 mv (lumen negative). Na secretion can be accounted for entirely by passive ion movement. K secretion can be partly explained by passive diffusion secondary to the negative intraluminal PD; however, its concentration in the secreted fluid is two to three times higher than expected on the basis of passive forces, suggesting a component of active K secretion. The PD response of the choleragen-treated ileum is normal in response to glucose, but there was no PD response to saline-free mannitol perfusion. This suggests that the normal differential permeability of the ileum to anions and cations may be altered by choleragen, although other explanations of this finding are also possible.
William L. Moore Jr., Fred A. Bieberdorf, Stephen G. Morawski, Richard A. Finkelstein, John S. Fordtran
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 121 | 0 |
94 | 20 | |
Scanned page | 238 | 4 |
Citation downloads | 45 | 0 |
Totals | 498 | 24 |
Total Views | 522 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.