The changes in serum calcium and the renal handling of this ion were evaluated during phosphate depletion. 96 renal clearance studies were carried out in 10 dogs before and after prolonged phosphate depletion (30-160 days) and after repletion. Depletion was produced by reducing phosphate intake and administering aluminum hydroxide gel while intakes of sodium, calcium, and magnesium were constant. With phosphate depletion, serum phosphorus fell to less than 1.0 mg/100 ml and diffusible serum calcium either remained unchanged or rose transiently. Glomerular filtration rate (GFR) fell by 15 to 53%. Despite the reduced filtered load of calcium, its fractional excretion increased in most experiments. This hypercalciuria was not dependent upon changes in sodium or magnesium excretion, or the urinary concentration of complexing anions, and persisted after sodium restriction. Phosphate repletion reversed the effects on GFR and calcium excretion. The intravenous infusion of small quantities of phosphate (0.04 mmole/min) into either intact or thyroparathyroidectomized (T-PTX), phosphate-depleted animals caused a significant reduction in fractional excretion of calcium, but the intrarenal infusion of 0.02 mmole/min of phosphate into one kidney failed to produce an ipsilateral effect. The administration of parathyroid extract reduced fractional calcium excretion, but the latter remained significantly elevated. After T-PTX, fractional calcium excretion did not increase in the phosphate-depleted animals. Furthermore, serum calcium was normal after T-PTX until serum phosphorus increased slightly, and only then did hypocalcemia develop. These observations indicate that (a) phosphate depletion produces hypercalciuria through a reduction in tubular reabsorption of calcium which is not due to changes in the tubular reabsorption of other ions; this effect is not reversed by the direct intrarenal infusion of phosphate; (b) a state of functional hypoparathyroidsm occurs during phosphate depletion which may, in part, cause reduced tubular reabsorption of calcium; (c) other extra renal mechanism(s), possibly related to events occurring in bone as a result of phosphate depletion, may have an effect on urinary calcium excretion; and (d) in the phosphatedepleted state, parathyroid hormone is not required for the maintenance of a normal level of serum calcium.
Jack W. Coburn, Shaul G. Massry
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 121 | 0 |
53 | 20 | |
Scanned page | 565 | 1 |
Citation downloads | 50 | 0 |
Totals | 789 | 21 |
Total Views | 810 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.