A technique is described which permits the inscription of the ventilatory response to isocapnic hypoxia in man as a continuous curve relating alveolar oxygen tension and minute ventilation. The adjustment of ventilation to changes in alveolar oxygen tension is complete in 18-23 sec and this is sufficiently rapid to justify the use of a non-steady-state method. Changes in alveolar carbon dioxide tension are prevented by addition of carbon dioxide to the inspired gas. The resulting [unk]VE-PAo2 curves are hyperbolic such that falling PAo2 produces only slight rises in [unk]VE until a critical PAo2 range of 50-60 mm Hg is reached. With further fall in PAo2, [unk]VE increases steeply and the slope of the curve approaches infinity at a tension of 30-40 mm Hg. For purposes of quantitation these curves are approximated by a simple hyperbolic function, the parameters of which are evaluated by a least squares fit of the data. The parameter A denotes curve shape such that the higher the value of A. the greater the increase in ventilation for a given decrease in PAo2 and hence the greater the hypoxic drive. Curves are highly reproducible for each subject and curves from different subjects are similar. In 10 normal subjects at resting PACo2, A = 180.2 ±14.5 (SEM). When PACo2 is adjusted to levels 5 mm Hg above and below control in six subjects A = 453.4 ±103 and 30.2 ±6.8 respectively. These latter values differed significantly from control (P < 0.05). These changes in curve shape provide a clear graphic description of interaction between hypercapnic and hypoxic ventilatory stimuli. At normal PACo2 the [unk]VE-PAo2 curve has an inflection zone located over the same Po2 range as the inflection in the oxygen-hemoglobin dissociation curve. This indicated that ventilation might be a linear function of arterial oxygen saturation or content. Studies in four subjects have demonstrated that ventilation is indeed related to arterial oxygen content in a linear fashion. These data suggest, but do not prove, that oxygen tension in chemoreceptor tissue as in part determined by circulatory oxygen delivery may be an important factor in controlling the ventilatory response to hypoxia.
John V. Weil, Edward Byrne-Quinn, Ingvar E. Sodal, W. Otto Friesen, Brian Underhill, Giles F. Filley, Robert F. Grover
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 426 | 34 |
84 | 84 | |
Scanned page | 399 | 49 |
Citation downloads | 54 | 0 |
Totals | 963 | 167 |
Total Views | 1,130 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.